从地质条件出发, 详细分析了滑坡的成因, 以大型的岩土工程数值分析软件( ADINA) 为研究 手段, 建立有限元计算模型, 用强度折减的方法分析了滑坡体在初始工况 、蓄水工况 、暴雨工况、水 位骤降工况和地震工况下的稳定情况, 根据滑坡的失稳情况, 在综合考虑的基础上, 提出了削坡减 载和地表排水相结合的治理措施, 计算结果表明, 治理措施是可行的, 研究结果对设计和施工具有 较大的参考价值.
2024-12-04 iGeo
山体滑坡极有可能造成人员伤亡和整体基础设施损坏。这就是为什么岩土工程师投入大量时间和精力来预防滑坡的原因,但如果山体滑坡已经发生,洞察力和理解有何帮助呢?在这种情况下,岩土工程师需要工具来了解滑坡的原因以及可能导致进一步不稳定的条件。用于了解滑坡的一种方法是对破坏的斜坡进行数值分析。这使得岩土工程师能够探索各种失效机制,并就滑坡最可能的原因提出假设。这正是GeoStudio中的3D边坡稳定性分析
2024-09-29 iGeo
基坑开挖将打破土体原有应力场,对下卧隧道产生不利影响。鉴于此,提出一计算既有隧道在上覆基坑卸 荷影响下的形变响应简化计算法。首先,利用搁置于 Pasternak 地基上的 Euler-Bernoulli 梁来模拟既有隧道,分析 中,采用可考虑隧道埋深影响的地基反力系数;其次,借助于 Mindlin 解给出基坑开挖所引起的隧道轴线位置处 的土体自由位移;然后,再结合隧道–地基土的位移耦合条件建立起隧
2024-12-20 iGeo
强度折减有限元稳定分析方法是目前应用及研究较多的一种分析方法 。 如何根据有限元计算结果来判别边坡稳定性, 是强度折减有限元稳定分析方法 的一个关键性问题。强度折减有限元法的失稳判据主要有 3 种:第一种以有限 元解的收敛性判定失稳状态 ;第二种根据计算域内最大节点位移与折减系数之 间关系曲线变化特征判定失稳状态;第 3 种通过计算域内塑性区是否贯通判定 失稳状态。利用 ADINA 有限元通用软件, 对二个不同的边坡算例进行强度折 减计算 ,分别采用 3 种失稳判据进行稳定性分析 , 对 3 种失稳判据的适用性 、3 者之间的一致性 、各自的适用范围进行了研究。研究表明, 对于均质边坡 , 3 种 失稳判据存在较好的一致性,但是对于非均质边坡, 塑性区贯通判据在应用范 围上存在局限性 。
2024-12-04 iGeo
基于GeoStudio和PLAXIS的边坡稳定性分析集成方法如何帮助工程师更高效地工作,提取更好的见解,并执行更好的项目?介绍在采矿中,边坡稳定性既是一个安全问题,也是一个经济问题。坍塌的斜坡会使工人处于真正的危险之中。此外,像这样的灾难性事件可能会使采矿作业陷入停顿,并严重降低盈利能力。这种事件在大型露天矿坑中尤其令人担忧,这些矿坑往往稳定性较差,更容易坍塌。    边坡稳定性一直是人们关注的领
2024-09-29 iGeo
针对济南地区典型地层上的基坑工程,土体采用 PLAXIS 3D 中的硬化土小应变(HSS)模型,建立了有限元模型, 并根据实际监测数据结合位移反分析技术,得到了该典型地层下土体 HSS 模型参数的一般选取方法。之后简化模型,分别 采用土体的 HSS 模型与 Mohr-Coulomb(M-C)模型进行有限元分析,对比基坑开挖至不同深度时,应用两种模型模拟所得 挡土墙变形与墙后地表沉降的差异。结果表明
2024-12-20 iGeo
边坡稳定安全系数是研究边坡稳定性定量评价的主要依据之一,其计算正确性对于预防滑坡具有 重要意义。首先通过泰勒分析法,找出不同坡度下土坡体最危险滑动面,运用瑞典圆弧条分法计算土坡的稳定 安全系数; 然后运用有限元重度增加法通过 ADINA 软件求出坡体的安全系数; 最后通过两种不同方法的计算结 果进行对比,再结合工程实例,通过 ADINA 分析结果与前人分析所得结果进行对比,表明了基于 ADINA 有限 元计算软件对于求解边坡稳定安全系数的有效性。
2024-12-04 iGeo
解决3D建模噩梦-检测和修复输入几何体没有检测和清理3D几何错误的工具,3D岩土建模很快就会变得异常复杂。这就是为什么我们投入了大量精力开发专门解决这些问题的工具。本文将论述,3D建模对岩土工程的全部价值将通过这些工具得以实现。3D几何错误检测和修复工具对于创建逼真的岩土模型至关重要。本文将帮助您了解在3D建模过程中可能遇到的常见几何输入问题,并指出我们提供的各种资源,帮助您克服这些挑战。3D岩土
2024-09-27 iGeo